What is Data Mapping and Transformation?
In most enterprise applications, data mapping and transformation are complex and vital.
Data from one system often requires reorganization, enrichment, validation, and mapping to pass to another system. Pipelines are optimized for such tasks in order to simplify it as much as possible.
PIPEFORCE offers a huge set of tools to do mappings and transformation of data structures. The most important ones are:
The
transform.*
commandsThe
data.*
commandsThe Pipeline Expression Language (PEL)
The Pipeline Functions like
@data
or@convert
You should get familiar with all of the toolings listed here in order to make the right choice to solve your data transformation task most effectively.
Transformer Commands
A transformer command in PIPEFORCE is a command which transforms / converts data from one structure into another. A transformer is usually used to transform from an "external" data format (like XML for example) into the "internal" data format which is typically JSON. There are out-of-the box transformers to convert from CSV to JSON, from Word to PDF, from PDF to PNG and many more.
Additionally you can write a custom transformation rule using a template and the transform.ftl
command for example.
See the commands reference for transformers.*
to find all transformers commands available.
Data Commands
A data command in PIPEFORCE is a command which can apply some rules on an "internal data structure" (which is mostly JSON). So usually you would load a JSON document from the property store or transform it from some external format using a transformer command to JSON first, and then you can change the JSON structure using the data commands.
See the commands reference for data.*
to find all data commands available.
PEL
The PEL (Pipeline Expression Language) can be used inside the parameters of nearly any command. So it is very important, that you have a good understanding of PEL in case you would like to do data transformation in PIPEFORCE.
There are a lot of built-in language constructs of PEL which help you reading, writing and transforming data the easiest way.
Especially these topics are worth a read in this context:
See the reference documentation for details about the PEL syntax.
PEL Utils
Additionally to the Pipeline Expression core syntax, there are Pipeline Utils available which also can help you to simplify your data transformation tasks. For data transformation these utils could be of special interest:
@calc - For number crunching.
@convert - For convertion tasks (for example from decimal to int).
@data - For data information and alter tasks.
@date - Formatting date and time data.
@list - Read and edit lists.
@text - Text utilities in order to change and test text data.
See the reference documentation for a full list of the available Pipeline Utils.
Transformation Patterns
There are many different ways of data transformation. In order to have a common understanding of the different approaches, below you can find the patterns of most of them listed and named.
Most of them are also mentioned as part of the well-known enterprise integration patterns which can be seen as a "defacto-standard" in the data and message integration world.
Splitter / Iterator
A splitter splits a given data object into multiple data objects. Each data object can then processed separately.
For example you have a data object order which contains a list of order items and you would like to "extract" these order items from the order and process each order item separately:
This is a common pattern also mentioned by the enterprise integration pattern collection.
This approach is sometimes also called Iterator. Looping over a given set of data objects is also called iterating over the items.
Iterate with command data.list.iterate
In PIPEFORCE you can use the data.list.iterate
command in order to iterate over a list of data and apply transformation patterns at the same time.
NOTE
This command is optimized for huge data iteration cycles and it doesn't add command execution counts for each cycle. So you should prefer this approach whenever possible.
Here is an example:
pipeline: - data.list.iterate: listA: [{"name": "Max", "allowed": false}, {"name": "Hennah", "allowed": false}] listB: [{"name": "Max", "age": 12}, {"name": "Hennah", "age": 23}] where: "itemA.name == itemB.name and itemB.age > 18" do: "itemA.allowed = true"
As you can see, in this example there are two lists: listA
and listB
. For every item in listA
, the listB
is also iterated. In the where
parameter you can define a PEL expression. In case this expression returns true
, the expression in do
is executed. In this example this means for every entry in listA
it is checked whether there is the same name
entry in listB
and if so, the age
is checked. If this value is > 18
, the origin listA
will be changed and the value of allowed
set to true
. The result will look like this:
[ { "name": "Max", "allowed": false }, { "name": "Hennah", "allowed": true } ]
It is also possible to define multiple do-expressions to be executed on each iteration cycle. See this example, where additionally a new attribute approved
with the current timestamp will be added on each "where-matching" entry:
pipeline: - data.list.iterate: listA: [{"name": "Max", "allowed": false}, {"name": "Hennah", "allowed": false}] listB: [{"name": "Max", "age": 12}, {"name": "Hennah", "age": 23}] where: "itemA.name == itemB.name and itemB.age > 18" do: | itemA.allowed = true; itemA.approved = @date.timestamp();
As you can see, multiple do-expressions will be separated by a semicolon ;
. You can write them in one single line, or in multiple lines using the pipe symbol |
. The output will look like this:
[ { "name": "Max", "allowed": false }, { "name": "Hennah", "allowed": true, "approved": 1659266178365 } ]
You can also iterate only a single listA
without any where
condition, like this example shows:
pipeline: - data.list.iterate: listA: [{"name": "Max", "allowed": false}, {"name": "Hennah", "allowed": false}] do: "itemA.allowed = true"
If the where
parameter is missing, the do
expression will be executed on any iteration item. In this example the result would be:
[ { "name": "Max", "allowed": true }, { "name": "Hennah", "allowed": true } ]
If-Then-Else conditions inside a do
expression can be implemented using the ternary operator (condition ? whenTrueAction : elseAction
). Let's rewrite the example from above and replace the where
parameter by a ternary operator inside the do
parameter:
pipeline: - data.list.iterate: listA: [{"name": "Max", "allowed": false}, {"name": "Hennah", "allowed": false}] listB: [{"name": "Max", "age": 12}, {"name": "Hennah", "age": 23}] do: "(itemA.name == itemB.name and itemB.age > 18) ? itemA.allowed = true : ''"
In case no elseAction
is required in the ternary operator, use an empty string ''
in order to indicate this.
In case no listA
parameter is given, the list is expected in the body or as optional parameter input
, all input commands have in common.
Since the parameters where
and do
can only contain PEL expressions, you can write them optionally without ${
and }
for better readability as shown in these examples.
Iterate with command foreach
Iterate with PEL
In some situations it is also handy to use directly the PEL selection or PEL projection features of the Pipeline Expression Language (PEL) on a given list in order to iterate it.
Iterate with custom function
For very complex data iteration tasks, you could also use the function.run
command and write a serverless function which iterates over the data. Since this approach requires knowledge about the scripting language and is usually not the best performing option, you should choose it only if there is no other option available to solve your iteration task.
Iterate with custom script
You can also use a script to iterate. See: /wiki/spaces/PA/pages/2603319334
Iterate with custom microservice
And if a script (serverless function / lambda) is also not working for you, you can write a custom microservice and run it inside PIEPFORCE. But this approach is outside of the scope of this data transformation section. See section Microservices for more details.
PIPEFORCE TOOLINGS
These are some suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific needs:
data.list.iterate
commandSelections and Projects of the Pipeline Expression Language (PEL)
Aggregator / Merger
An aggregator combines multiple data objects into a single data object. Sometimes it is also called a Merger since it "merges" data objects into a single data object.
For example you have multiple Inventory Items and you would like to aggregate them together into one Inventory Order data object:
This is a common pattern mentioned by the enterprise integration pattern collection.
Enricher
An enricher adds additional information to a given data object.
The enrich data typically comes from a different data source like a database or similar.
This is a common pattern also mentioned by the enterprise integration pattern collection.
For example you have an address data object with just the zip code in it:
{ "street": "Lincoln Blvd", "zipCode": "90001" }
You could then have an enricher which resolves the zip code and adds the city name belonging to this zip code to the address data object:
{ "street": "Lincoln Blvd", "zipCode": "90001", "city": "Los Angeles" }
In PIPEFORCE there are multiple ways to enrich a data object. You can use for example the data.enrich
command in order to enrich data at a certain point. See this example for this:
pipeline: - data.enrich: input: { "street": "Lincoln Blvd", "zipCode": "90001" } do: "input.city = 'Los Angeles'"
In the set
parameter you can also refer to any pipeline or PEL Util in order to load data from external. For example:
pipeline: - data.enrich: input: { "street": "Lincoln Blvd", "zipCode": "90001" } do: ${ input.city = @command.call('http.get', {'url': 'http://city.lookup?zipCode=' + input.zipCode}) }
As you can see, you can access the input data in the do
expression using the variable input
. Also the variables vars
, headers
and body
will be provided here.
Another possibility is to use the data.list.iterate
command to enrich the items of a list while iterating them.
PIPEFORCE TOOLINGS
data.enrich
commanddata.list.iterate
commandset
command
Deduplicator
A deduplicator is a special form of a filter. It removes data duplicates from a given input.
PIPEFORCE TOOLINGS
These are the suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific requirements best:
ata.list.filter
commanddata.mapping
command (see JSON Data Mapping)data.filter.jmespath
command and@data.jmespath
utildata.filter.pel
commandSelections and Projects of the Pipeline Expression Language (PEL)
Filter
A filter removes a selected set of data from a bigger set of data. So only a subset of the origin data will pass to the target.
This is a common pattern also mentioned by the enterprise integration pattern collection.
PIPEFORCE TOOLINGS
These are some suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific needs:
data.list.filter
commanddata.mapping
command (see JSON Data Mapping)data.filter.jmespath
command and@data.jmespath
utildata.filter.pel
commandSelections and Projects of the Pipeline Expression Language (PEL)
Limiter
A limiter limits a given data list to a maximum size. It can be seen as a special form of a filter.
PIPEFORCE TOOLINGS
These are some suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific needs:
data.list.filter
commanddata.mapping
command (see JSON Data Mapping)data.filter.jmespath
command and@data.jmespath
utildata.filter.pel
commandSelections and Projects of the Pipeline Expression Language (PEL)
Mapper
A mapper maps a given data structure into another data structure, so business logic is not required to handle this.
This is a common pattern also mentioned by the enterprise integration pattern collection.
PIPEFORCE TOOLINGS
These are the suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific requirements best:
data.mapping
command (see JSON Data Mapping)data.list.iterate
commanddata.filter.jmespath
command and@data.jmespath
util
Mapping with data.mapping
See here for more details how to do JSON data mapping using the command data.mapping: JSON Data Mapping .
Mapping with command data.list.iterate
You can also use the command data.list.iterate
for data mapping. Examples see above.
Sorter
A sorter sorts a given data list based on some condition. This is also known as the Resequencer pattern.
This is a common pattern also mentioned by the enterprise integration pattern collection.
PIPEFORCE TOOLINGS
These are the suggested PIPEFORCE toolings in order to implement this pattern you can select from to fit your specific requirements best:
data.filter.jmespath
command and@data.jmespath
util (See: https://jmespath.org/examples.html#sort-by )
Add Comment